ŗ

2335

Crystal Structure of Tris-(2,2,6,6-tetramethylheptane-2,5-dionato) Erbium(III)

BY J. P. R. DE VILLIERS AND J. C. A. BOEYENS

Chemical Physics Group, Council for Scientific and Industrial Research, P. O. Box 395, Pretoria, South Africa

(Received 19 November 1970)

The crystal structure of the tris erbium salt of 2,2,6,6-tetramethylheptane-3,5-dione, $Er(thd)_3$, has been determined by three-dimensional X-ray methods, using 1637 intensities obtained by counter methods with Mo K α radiation at room temperature. There are two formula units per orthorhombic unit cell with dimensions of a = 17.825 (8), b = 10.627 (10), c = 9.950 (4) Å. The structure was obtained by full-matrix least-squares refinement of atomic and anisotropic thermal parameters to a conventional R = 0.041. The space group is $Pmn2_1$ and the molecules are arranged in almost trigonal fashion in layers lying approximately along (010). The erbium ion is coordinated by six oxygen atoms and the coordination geometry is almost ideally trigonal prismatic. The relationship between this structure and the known structures of hydrated and dimeric lanthanide diketonates is discussed.

Introduction

The lanthanides La to Gd form monoclinic dimeric chelates $Ln_2(thd)_6$ with 2,2,6,6-tetramethylheptane-3,5-dione on crystallization from n-hexane or from the vapour phase (Erasmus & Boeyens, 1970) whereas the thd chelates of Ho to Lu are obtained as orthorhombic crystals under the same conditions. (Mode & Smith, 1969). The compounds of both Tb and Dy crystallize in the monoclinic and orthorhombic forms from hexane and the vapour, respectively (Erasmus & Boeyens, 1970). From hexane, exposed to the atmosphere, triclinic crystals of $Eu(thd)_3$. H_2O and $Dy(thd)_3$. H₂O have also been obtained, (Erasmus & Boeyens, 1971). The structures of the monoclinic and hydrated triclinic phases have been determined (Erasmus & Boeyens, 1970, 1971). The structure of the orthorhombic phase has not been determined previously and has been assumed to be monomeric (Boeyens, 1971). This structure is reported here.

Attempts to recrystallize $Er(thd)_3$ prepared by the method of Eisentraut & Sievers (1968) from n-hexane resulted in the formation of three types of crystals with slightly different habits. One of these was found to be triclinic and similar to the hydrates of Eu and Dy. Both the other two types are orthorhombic and the large difference in cell sizes suggests that they contain dimeric and monomeric species, respectively. The structure type characterized by the large unit cell (possibly hydrated) is still being studied and only the structure of the anhydrous $Er(thd)_3$ crystal with the smaller unit cell is described in this paper.

Crystal data

Preliminary cell dimensions of the anhydrous orthorhombic $Er(thd)_3$ crystals were published by Mode & Smith (1969) and refinement of these values (suitably interchanged to match the standard setting of the space group) on an automatic four-circle diffractometer by a method of least-squares (Busing & Levy, 1967) yielded the following results:

$$a = 17.825 (8) \text{ Å}$$

 $b = 10.627 (10)$
 $c = 9.950 (4)$.

A positive test for pyro-electricity on the simple device described by Herbstein & Schoening (1957) together with the observed absences of hol for $h+l \neq 2n$ identified space group No. 31 in International Tables for X-ray Crystallography (1965). The proper setting, Pmn2₁, was confirmed by the detailed analysis of the structure. The measured density of 1.26 g.cm⁻³ (Boudreaux, 1968) yields z=2, $\varrho_x=1.26$ g.cm⁻³.

Determination of the structure

Intensity data for the sphere with $\sin \theta / \lambda \le 0.596$ were collected on a Hilger & Watts single-crystal diffractometer using Zr-filtered Mo $K\alpha$ radiation. An ω scan mode was used, counting for a total of 300 seconds per reflexion. This was done in 50 steps of 0.02° and countting for 6 seconds per step. Corrections for background were made by measuring the general background as a function of θ between two lattice rows and subtracting the scaled values from the measured integrated peak intensities. A total of 1844 reflexions were measured. 207 of these were not significantly above the background. Periodic checks on the strong 600 and 013 reflexions confirmed that there was no appreciable crystal decomposition. Absorption corrections were not applied because the factors stay almost constant for a crystal of radius 0.015 cm, $\mu R = 0.37$. Lp corrections were applied using a standard computer program.

The fractional y coordinate of the Er ion was obtained from a Patterson synthesis and three-dimensional Fourier syntheses were calculated for both possible settings of the space group $(P2_1nm \text{ and } Pmn2_1)$. Only the latter yielded electron density maxima which made chemical sense when interpreted as representing the light atoms. The initial confusion, because of a pseudo mirror plane along (001), disappeared once all the atoms had been placed correctly. The trial parameters were refined by full-matrix least squares with the program ORFLS of Busing, Martin & Levy (1962) on an IBM 360/65 computer. Apart from fractional atomic coordinates, isotropic individual temperature factors were refined until the conventional R value reached 0.10. Anisotropic thermal parameters were introduced and refinement with unitary weights was continued until all parameter shifts were less than 0.1 of the estimated standard deviations. At this stage $R = \sum |\Delta F| / \sum F_o = 0.041$ and the weighted $R_w = \sum w (\Delta F)^2 / \sum w F_o^2 |^{1/2} = 0.049$. Further refinement was sought by the introduction of a weighting scheme based on counting statistics (Stout & Jensen, 1968), but no visible improvement resulted. It yielded R = 0.047 and $R_{w} = 0.052$. The estimated standard deviations were uniformly higher than before and no difference in the calculated bond lengths was observed. The results given here are based on the refinement with unitary weights for all observed reflexions.

2336

The refined parameters, according to the nomenclature of Fig. 1, are listed in Table 1 and the structure factors on an absolute scale (F_{000} for non-hydrogen atoms = 628) in Table 2. A difference Fourier synthesis computed from these structure factors was completely featureless and provided no evidence of hydrogen atoms or other unexplained regions of electron density. It is not surprising that the hydrogen atoms were not found from the difference map. Apart from the heavy Er atom the anisotropic refinement would tend to compensate for them.

Description of the structure

The stereoscopic packing diagram, Fig. 2, shows that the crystal is made up of monomeric $Er(thd)_3$ units. One of the chelate rings lies in a mirror plane and the other two are symmetry related across this mirror plane. Although not demanded by symmetry, the chelate

Fig. 1. Schematic drawing to illustrate the atomic numbering system used for the two chelate rings I and II. Averaged bond lengths and angles are also shown.

Table 1. Fractional atomic coordinates $(\times 10^4)$ and individual thermal parameters $(\times 10^4)$ and their standard deviations with respect to the number of digits

The two crystallographically independent chelate rings are numbered in Roman numerals and the atoms associated with each ring according to the scheme of Fig. 1.

$$T = \exp\left[-(h^2\beta_{11} \times k^2\beta_{22} + l^2\beta_{33} + 2hk\beta_{12} + 2hl\beta_{13} + 2hl\beta_{23})\right]$$

		x	У	z	β_{11}	β_{22}	β ₃₃	β_{12}	β_{13}	β_{23}
Er		0	0945 (0.6)	0	44.1 (0.2)	71.6 (0.6)	117.5 (0.8)	0	0	15.1(1.9)
O(1)		±*	0747 (11)	3726 (13)	69 (7)	83 (12)	105 (15)	0	0	-9(11)
O(2)		0	1679 (11)	7980 (14)	68 (7)	77 (11)	131 (18)	0	0	4 (12)
C(1)		$\frac{1}{2}*$	2673 (25)	0641 (31)	344 (27)	104 (27)	172 (40)	0	0	33 (28)
C(2)		4290 (14)	2889 (20)	2680 (36)	128 (15)	199 (28)	822 (101)	105 (18)	203 (34)	251 (45)
C(4)		1/2 *	2381 (15)	2137 (21)	61 (9)	53 (14)	142 (25)	0	0	-6 (16)
C(5)	1	<u>}</u> *	0969 (18)	2484 (20)	46 (8)	102 (19)	133 (25)	0	0	1 (20)
C(6)		1 *	0046 (17)	1489 (21)	54 (8)	87 (18)	131 (24)	0	0	23 (18)
C(7)		Ō	1250 (16)	6758 (23)	47 (8)	69 (17)	165 (30)	0	0	7 (19)
C(8)		0	2325 (24)	5655 (38)	85 (16)	110 (29)	169 (38)	0	0	65 (29)
C(9)		0690 (11)	3117 (18)	5884 (22)	74 (9)	206 (25)	285 (34)	-53 (13)	-15 (15)	54 (26)
C(11)		0	1832 (26)	4266 (29)	130 (21)	125 (34)	79 (29)	0	0	-24 (27)
O(1)		0818 (6)	2457 (8)	0507 (11)	59 (4)	86 (8)	241 (21)	-7 (5)	-43 (7)	30 (9)
O(2)		0937 (6)	0042 (7)	1195 (10)	62 (5)	79 (8)	154 (13)	-3(5)	-4(7)	14 (9)
C(1)		1701 (20)	4550 (20)	-0269 (31)	276 (28)	200 (26)	198 (59)	-159 (24)	15 (30)	-4(28)
C(2)		1248 (18)	4616 (18)	2221 (33)	187 (22)	122 (21)	560 (71)	- 70 (19)	184 (36)	-139(34)
C(3)		2509 (16)	4102 (19)	1729 (52)	108 (14)	139 (22)	1303 (154)	- 29 (17)	-227(40)	23 (60)
C(4)		1729 (10)	3970 (11)	1144 (18)	68 (7)	57 (11)	200 (23)	-20(8)	-12(11)	-5(15)
C(5)	11	1431 (8)	2573 (12)	1091 (15)	52 (6)	89 (13)	146 (18)	-16(7)	-10(9)	-6(13)
C(6)		1857 (8)	1571 (11)	1637 (15)	57 (6)	79 (11)	154 (19)	-5 (7)	-7(9)	2 (13)
C(7)		1587 (8)	0354 (12)	1645 (14)	46 (6)	101 (13)	134 (18)	-3(7)	-7 (8)	1 (13)
C(8)		2961 (9)	0711 (12)	7259 (16)	58 (7)	91 (14)	173 (21)	11 (8)	16 (10)	- 19 (14)
C(9)		2908 (12)	1802 (14)	6161 (24)	93 (11)	102 (15)	322 (37)	15 (11)	50 (17)	17 (22)
C(10)		3409 (12)	1229 (19)	8469 (20)	90 (10)	252 (29)	217 (28)	38 (15)	-34(15)	-156 (26)
C(11)		2182 (10)	0367 (18)	7668 (21)	63 (8)	168 (22)	263 (33)	18 (11)	57 (14)	-19 (23)

* These values are not scaled.

ring in the general position is also flat as proven by the deviations from planarity, calculated by a method of least-squares and summarized in Table 3. The geometry of coordination corresponds to the rather uncommon trigonal prism. The prism is slightly compressed and not as ideal as in tris(*cis*-1,2-diphenyleth-ene-1,2-dithiolato)rhenium (Eisenberg & Ibers, 1965),

but the molecular unit has the same 'paddle wheel' appearance. The dimensions of the coordination polyhedra are summarized in Fig. 3. The important molecular parameters are listed in Tables 4 and 5 together with corresponding values obtained for $Dy(thd)_3$. H₂O (Erasmus & Boeyens, 1971). The molecular structure is illustrated stereoscopically in Fig. 4.

Table 2. Observed and calculated structure factors on an absolute scale $\times 10$ F_{000} for non-hydrogen atoms = 628.

к	Fo f	Fc M	(Fo	Fc	K Fo	Fc K	Fo	Fc K	Fo	Fc K	Fo	Fc K	Fo	Fc K	Fo	Fc K	Fo	Fc P	< Fo	Fc K	Fo	Fc K	Fo	Fск	Fo F	сκ	Fo	Fc K	Fo	Fc
, P	60.0	e Sector S		-	1 24 1 24 1 105	1.1.2			2 44 2 5 4	į.	8 -, 1 985	1 4	100 S	1005 10 568 1 101								145	1.4	ಬಲ್ಲಿ ಕಿರ್ಗಳ	10	2 1 12 1 14 2		4	- 5	1
÷.	342 242	211 - 1 223 - 1		19	6 - 1946 1 - 194				1		823 517	781 (314 355	51	1	2.	н.	1.		. 11			132 150	4		1.7			6 (1 d. 1) 2 d. 1	
	620	800	10	140	9 121 9 121 8 313	1/ 8 3n; 0	F 1, 1	in l		203-4	1097	1050 0	- 109	722 130		-		- 11. - 11 1		11.1	- 1944 - 1944 - 1944		1	1.1		1 1*. 524 - 1			14-	
*	259° 1117 2111	10.5	- 20 - 2	2 ta 9 t	1. 319	201 -2	2251 548 290	1262 2	- 1.15 - 639	619 7	615 311 213	394.11		ъй –	1.0						16	·	3. 1 112 112	4.1	19	14. 31.			118	1.1
10	330	136 1.	14.	181	н 2, 1 2 - 199	189	915 1199	- 912 1010	294	127 9	193	185	8 671	200	101				1 199	3.6		205	16) 185		1	14	91		ang is	ų.
а: а	271 0. L-1	181	H 1, 1 (18) (095	1701 1701	2 11.5	1261 C 1641 7 753 C	761 438 53	129 9	1 141 10 110 1 51	409 L 124	271	1.5 2	118	48 . 454 61	на. 11 г. с	. 1	. î.	<i>.</i>	1 208		166 	180 - 50 - 111 - 1	8.9 <u>1</u> ;	ц., ⁵		. 1 () 			15	
1	1185 1	1209 2 1040 3	917 2#7	833 201	5 116	965 - 5	279	289 11	1.1	192 195 - 1	в 1, 1. 967	200	539	532	791	*		= 4 		200	5 241	ii -	- 11 		26.1	215 - 4			1	11.
ż	537	527 5	851 778	800 772	8 541 9 367	57 U L4 130	176	156	11.5, 1 869		10.7	1.1	294			172			i in	19	,	- 66	15	÷.,		194 - 11 12 1 - 4	· ري ا		16 - 17 1 158 155	1
7 8	367 760 177	111 7 771 8 150 9	311 67 250	33.1 - 96 - 25.5	10 112 12 20	219	H 1, 1 765 1012	-2 1 715 2	165 528 517			217 1	(1.		- 44 - 345 - 1	113	4 14) 4 14) 1 14)		!	112	114					i.	-3. 103		11
30	212	218 10	316 321	313	0 1412	1121 4	958 675	5.0	719 751	10.0	1947 975	34.	18 A.	2121	237	235 288	212.	156	4	- 40	154 85	111		•		2	156	3.	11-17, i. 7%	4. 8.
12	173	178	Hel, I	-2 -2	2 505	489 6	203	211 7	288	24111	10	71		нти 533	11 74 16 11 74 16	224 10	, 211 9-8, Г	. 1	: 31 201	236 g	121	unu di Basi	115		114 245 135 - 1	116 226 - 2 253 - 1	анан н 113		122	115
н 0	1193 1	1579 2 403 3	1266 1017 762	1193	1 677 5 701 6 715	613 8 77C 9 731 12	353	559 Jr 346 11	267	32/ 28# 1.9_0	R 5, L	·	- 1.6 - 1.6 - 415	19 295 - 1	- 41	11			р. – – – – – – – – – – – – – – – – – – –	1.2	- 1-7-	101			10	162 2	211 216 1.36	10		
ì	117	430 5	810	823	7 114 8 169	403	н.з. с		ан, с	۰. ¹	615	470 192	191	1943 328			. **	120	i da	1		ын. 1	. 35	11 74 74			u 15, 1	1.1	977, 1. 111 86	108
5	86 8 771	849 7 759 8	626	702	10 295	31.8 1	1 98	1965 2	1001	990 1 191 9	47.6	181 1	61		279				1.15		137	10					151			
7 8 9	421 270 319	427 9 247 10 317 12	9 381 109 157	382 1	12 155	101 1	293 511	510 s	110	715 7	186 127 112	176	8 6. - 453	U A - N - 107 C 11 - 107 C					5 (94 6 (15 7 (13)		$c \downarrow i$		• <u>.</u> : ·		101 20		130	158	217	18- 18-
10	316	362	H=1, L	.,	1 771	721 6 981 7	552	513 7 210 8	184	497 10	198 238	251	383 155	155	H - , - , 5 - 1 197	33	F # 115		1 K N 1			7		374 21.	на се се с 1949 — С	а т р. т	. i.i.	19-1	125 116 96	1.04
н.	.0, L=)	10	797	767	4 791 5 165	791 9	213 308	217 10	244 43 78	122	н. 1, 1. 453	1 167	519	511	156	8	197	195	2 23				1.	1.	14		11 - 11 - 11 - 11 - 18 - 1	16. 18.	E SEL	
	183 805 844	463 3 820 4 816 5	274 668 865	288 650 861	c 110 7 555 8 159	372 12	250 150	238 12 148	111	163 3	709 718 180	717 798 503 1	10. 2.4 2.4	257	3 N.	100	285	319 291	4 158 5 17 6 16	171					5 S. 10 S.		- 63 116	167 3	151 187	185
\$	624 294	718 6	737	731	9 308 5 81	3C1 25 1	H=), L 111	119 1	1010 881	1013 5	128	120 1 229	214	296	167	179	73 119	121	, I., Каз	ius f	в	ė, į	сы,		14	а _с	H 15, T 153	146	н 14 г.	
7	570 683	579 9	328	007 001	11.2		819 618	819 1	161 160 578	351 / 451 8 542 9	334 294	352 287	495	38. 695	a t, L	·	1 4, 1. 176	.: 191	1 211	10.	18.		2	÷.		65 Å	\$3	103	122	125
10 12	111	107 11 117 12 179	243	242	0 891 1 613 2 181	496 3 - NG - G - 111 - 7	119	112 n 121 7 163 R	522 206 76	\$27-16 214 90	94 1-5, 1	5 99	5 501 514 106	519 310 129	418 192	177	295 275 194	267	4 111 5 160	- 114 - 1 - 114 - 1 - 154 - 1	34				- 15 - 15 - 10	71) 6. 2 49	н:.'	yn ;	340	133
H-	0, L-1	540 1	H I, 1 447	422	3 108 4 646	41C 8	293	127 9 307 10	186 278	26/8 C 281 1	860 708	786	180	216	94 94 141	90 5 126 -		92	6 1.6 8 9. 3	1 441 	- 23			100		74 0	116. C 286	202	на, в	.)
ļ.	190 191	499 3 552 4	955 476	960	6	- 33	н <u>1.</u> ц	-5	201 He4, C	3	127 136	119 4		- 19 - 19	241	21	1.5	190	1 75	85 1 ⁷ 131	54	16	er je	· · · ·			104		117	144 152 97
4	612 1 613 1 619 1	557 6 858 7	255	259 1 395 1	9 177 0 280	289 1	8:8 560 132	867 1 560 2 151 3	55 I 766	558 5 593 6 579 7	467 344 159	311	11 / . 1627		вт, 1		- 4, 1 285	•	4 5	2 149 2 2	462	387 473 3	217	101	a-14, C 254 254		212	245 171 49	ана н	
6 7 8	- 695 - 6 - 401 - 4 - 128 - 1	697 8 463 9 164 10	476	964 324	H 2, L 1 593	-5) 58) 5	138	452 5	373	371 8 126 9	57	11		240	1.5		232		6 - 179 6 - 179	LC 3 - 952 4 - 849 5	461	115 a 335	, 10) . 7 (\$9	228 3 94 1			с. с. с. с. с.	1	142	147
9	235 2 222 2	211	н.1, 1	. 5	2 754 3 712	720 G	4r 5 165	414 7	350	384 11	230	214	317 192	32 1 558				25 i - 21 c	2 295	- 19 6	124	125 8	175	185 6		07 1 13 2	126	15 3	197	#7 117
 	231 2 0, 1, 5	227 0	764 561 201	794 517 200	5 157 1 169	117 10	139 278 214	1)9 9 271 .0 225	266 136	261 1 163 2	101	410	20 10 10	- 20 - 2 - 150 - 3 - 12	326 195	3.5 7	121 H.A. 1		5 10	424. 9	25.0	181 6	111, 118 	323 y	9	93	141	152	н 18, г	-
2	576 5 925 8 717 7	591 j 873 4	262	260	7 417 A 414 9 304	428	H=1, L	£ 11	H 4, 1 137	6 111 -	531 538 75	350	- 10	- 55	97 19 7. 1	9) I 8 2	2.5	1.17	7 233 9 351 6 260	217	508	-) - 510- 3	11	174 - 51 - 0	н 14, 1, 1,	e .	- 1.4 7 - 7 - 7	100 j	110	197
•	116 J	1	397 204	393 1	- 10	10.5	511	518 2	2:4	429 () 218 7 101 7	21.2	211	247	34	114	221	15	122	1 38	2.9	124	1.5	2.5	214			21	224	K 18. :	
1	247 2 244 2 462 1	201 - 8 254 - 9 1.1 - 10	105	98 111 245	8 24 3 5 559 1 528	541 5 541 5 519 6	3 44 1 5	369 1 - 78 5 - 265 6	351	359 0	14		12	1	1	Ξ.,	ин, 1 38.		1 30	-11 - 304		229 - 1 - 413 - - 380 - 1		чс : .	3	11		128 4, 147 1 188 5	135 46 128	1.4
я	231 2	au	207	210	2 355 3 56 4 66	77 8	111	11. 7	117	112 173	н 5. 201	1	101	115 (31	193	1.		19	4 369 5 63	3.9 8	151 111	100	201	198	1		162 162	151 - 5 - 95 - 4	231 90	2
6 1	603 A	195 j 201 g	332 672	117	5 176 6 111	167 10	тр. 		ня, т	-7	1.1	-	10	÷.		9 - 201 - 190 - 2	n s, c		318	146 . , 360	1.0	7.1		1.1	8-141 194	. I ⁸	144, 1	114	но, Б	
	224 - 2 192 - 5	1345 I 104 I	111	111	7 155 0 216	201	512	101	212 389 463	391	286	314	1 A. 1 100 200	2		1.		100		- 26 - 1 - 61 -	7,7				Å.	1	18		12	14
2 1 7	317 3	507 A. 517 7 215 8	102 315 320	144 311 326	10-25 - 0 1 - 202	211	101 301	110 6	235	214 7	.0		71	10 2	- 13		- 551 - 53 - 53		ана. Бара		214	241					ыл, г.	11. 1		1.7
• 10	179 1 208 2	212	212	214	2 110 3 102 1 282	425 7	125	139 H 118 H 225 Y	259 194	266 181 1	нь, з. 161	1	947 287	317 319	1.7, 0		12		6 191 1 423 2 1.6	117 2	- 125 - 37 - 37	105	1.1	1.		6 : ?	216	111 187 - 1 161 - 2	1. 39, 1. 101 150	2 778 333
, н. Г	40, 1 7 109	10 1	611 151	624 456	6 113 7 210	211 10	16) 188	119 175 ₀	н 1, 1 312	A	213		61	20	105	in in	1	*	1 328	80 9 338	- 151	157-1	91.12. L 87	let 1			135 171	125	115	110 185
4	567 5 112 3	551 3 325 4	283	166 79 277	9 18)	187	H-3, 1 151	<u></u>	350 181 61	188 G	81 89	11.1	177	177 209	H-7. L	4. j	786	10	6 390 5 192	394 0 180 1	313	358 1 289	10	316 A.		51 F.	70	112	a 19, 1.	· · · ·
7.8	112 1 236 2 219 2	147 g 219 6 256 7	395 310 197	382 353 195	0 325 1 372	351 3	329	311 - 4 263 - 5	261 328 240	261 5	163	186. 1	131	76	148	13	1994 1927 1924	113 40	- 145 6 - 146	214 4	217 211 320	2:3-1	11 11 11 380	1.1.7	10 M U 192	82 H 97 J	116, U 116 158	107	109	152
۶ 	191 1	195 ĝ 10	139 197	131	2 238 4 265 5 327	211 0	109 184 218	121 - 7 191 - 7 212	164	163 0	8-5, L 320 213	9 7 311 235	175	116	8 8, 1 891 745	902 5 787 5	6, 8 162	61.8	1 10, 1 372	1-3 6 373 7 564 9	250	211 3 120 4 81 5	330 270		H 15, 1 5 215 - D		101 50	107 4	109	94
с" 1	468 4	162	H#1, L 198	- 9 166	6 255	256 9	130	112 1	8 1, L 191 365	-9 2 178 3 291 1	80 4.0	95 0 75 1	112	141 2	361	408 290	71	169	462	6L1 392	8/11, L	z6	92 210	89) 2 4	218 2	ы н 15 б	172	4 155 - 5	H-19, L- 78	4
3	506 2 50 2 258 2	30 3	290 347 215	279 331 237	у 10.1 Н 2, 1		305 298	326 3	259 153 51	266	254 264	208 -4	11.9 14.9	115 5		585 11	219	225	132	134 2 319 3	333	334 9 312	11)	157 -	118 I	19 1 19 1	105	102 102 115	86	15.1
3 6 7	310 3 294 4 130 1	327 6 110 7	215	127 222 167	1 208 2 150 1 287	208 - 310 - 1 290 - 1	14-	141	110	Tio 7	49 8-7, 6	147 20 - 1	F 4. 1 93	11 4 89 5	75	27) 28 1	8 9 1	423 9	200 203	283 4	185 111 112	107 N	N. 13, 11 467 376	1.	li 13, 5,6 179 - 3 163		14, L	.7 0 /8 1	H-19, L. 12G 99	5 106 15
9	117 1	130 9	119	- 101 - 9	1 157 7 155 6 150	159 7	177	120 0	201	211 2	13 186 193	106 2	121	118-25	1.1	1		131 0	Б 10, 1 2 563	L-4 8 561	16.	1.5 2	154 150	10 1	12	ļ,	95 208	1-6 110	H 20, 1	
1	183 1	178 Ö 210 1	379	390 303	, н.с., 1.	-10	10.1.1	112 4	67 119 171	110 171	129	1.2	P 2, 1 345	579 U	11 A. 1 11 A.	1.4	13 / 461	112 - 4.2		102 1	121)15 145	15	320 G	1.5	in je in je	17. L 128	0 1 121 1	16.7	132
4	215 2 150 1 86	19 2 111 4 111 5	180	191 231	0 235 1 157 4 173	195 1	. 19 161	2:0 6	139	137	128 75	117 3	866	A12 3 306 4		546 10	232 232 73	393 4 210 5 75 9	111	118 3 123 1	-(* 3 -(7 -(38	115 7 54 9 152	21		надар ў 1911 — П 1914 — а		26 8 214 114	206 ° 235 109	н 10, г.	 a
ŝ	207 I 188 I	(4) (8)	199 И.С. Л.	193 . 10	5 185	183 6 139	70 843. L	л а 3	н 1, 1 120 151	11 - 116 - 134 - i	нк, ц. 1346	6 7 1512 -	. 61 340 379	251 5 338 5 377 7	178 252 119	197 259 3-7	н ч, с	, ,		264 - 5 119 - 6 129	1972 1972 1971	180 1	H . 1, L 241 331	.2 5 .12 .12	i en Arres	6) 6 7	91 70	- 08 - 2 12 1 - 3	128 97	1.8 154
, ^н	5, 1 10 231 - 2	10 -	231	221	1 2, 1.	1: - P	155	150 4	115 8.5	ant in a	1228	412 1.	196 156	10	183	100	51	117 12	н ула Переза		нц. 1. 1		281	276 C		15 H	192 192	191 o	H.2C, L	: 58
÷	119 1 10 1 10 1	150 - 5 152 - 4 178	12	118	3 16 ⁻ 1 99	110 1	K.1, L.	e	121	1) 874	10.01 721	41A 7.5 0	н та 20		н м. L	÷ 1	61 577 126		-4" 261		4. 194 194	n e De	146 147 213	21	1 1. 4	··· 1 2 3	95 86	191	75 84	41 43
ь Б	-0, Le)1	153 p 1 1	# 11 0 178 130	152 157	11). L 1 - 55)		1390 1317 298	1151 4 367 5	296 216	297 - 7 181 - 9	511 355 191	516 J 311 J 151 J	1.1	- 1 1. - 1 1. - 1 1.	147 474 23	7	11)	1. 1	96	2011 - 10 - 50 - 60 - 124	ä	12.5	1.4	$\{a_{i}, i_{i}\}$		1 1		17 180	н 20, С. 77	1
1	85	16 4 172	88 H-2, (.	1.4 .0	2 1582 3 826 1 517	1550 1 809 1 539 5	31.2 1118 787	398 6 1092 7 765 8	277 423 316	20115 16641 32942	275 215 113	263 - 4 218 - 5 116 - 6	799	- 30 - 1 797 - 4 363 - 5	50 185		10 10			254 725 - 6	1: 11. L	161 1	n i b Lini	-3 1 -412 - -256 -		a i a i	17, 5	1	93 85	97 97
4	96 1	ii ș	121	1199		321 32 7	598 451	712 9	320 150	515 101		1	1		411	353 225 - 1	н 9. 1. 49.	4 . °	B 10, 1		2.1 2.0 1 *)		. 12		11 1		1-	1.5	6 23 - 1 N	
ĸ			2.00	- '	, (#J	512 8	1. 1		•	104 1	1.3			1.7.7	100	100 - 5	1.2	477 6		- e - e		116 1		- C - 1	н., њ.		•		•	1 ,

Table 3. Deviations from planarity of the chelate ring in general position as the distances of the atoms from the best plane

> -0.46204u + 0.15371v + 0.87343w = 0.18796 obtained by least squares u, v, w are Ångstrom coordinates.

Er	O(1)	O(2)	C(4)	C(5)	C(6)	C(7)	C(8)
<i>−</i> 0·034	-0.050	0.086	0.031	0.001	-0.038	-0.007	-0.020

Table 4. Observed molecular bond lengths

	I	II	Av.	Dy(thd)3.H2O
Er—O(1) Er—O(2)	2·200 (12 2·156 (14)	2·228 (9) 2·263 (10)	} 2.212	
O(1)-C(5) O(2)-C(7)	1·258 (22) 1·298 (24)	1·245 (16) 1·286 (15)	1.272	1.28
O(1)-O(2)	2.683 (16)	2.665 (11)	2 ⋅674	2.74
C(5)–C(6) C(7)–C(6)	1·394 (25) 1·403 (24)	1·417 (18) 1·381 (17)	} 1.399	1.40
C(5)–C(4) C(7)–C(8)	1·539 (24) 1·585 (31)	1·577 (16) 1·518 (18)	} 1.555	1.55
C(4)-C(1) C(4)-C(2) C(4)-C(3) C(8)-C(9) C(8)-C(10) C(8)-C(11) C(8)-C(11) C(8)-C(11) C(8)-C(11) C(8)-C(1) C(1)-C(1) C(1)-C(2) C(2)-C(2) C(1)-C(2) C(2)-C(2) C(2)-C(2) C(2)-C(2) C(2)-C(2) C(3)-C(2) C(3)-C(3)-C(3) C(3)-C(3)-C(3)-C(3)-C(3)-C(3)-C(3)-C(3)-	1.520 (34) 1.478 (22) 1.508 (23)	1.536 (33) 1.535 (28) 1.514 (30) 1.596 (23) 1.545 (22)	1.520	1.54
$C(\delta) - C(\Pi)$	1.4/8 (31)	1.472 (21)	ł	

Discussion

This structure represents the first example of a monomeric anhydrous lanthanide chelate. Other known structures of lanthanide tris-chelates include those of hydrates (Erasmus & Boeyens, 1971; Zalkin, Templeton & Karraker, 1969; Cunningham, Sands, Wagner & Richardson, 1969; Boeyens & de Villiers, 1971), dimers (Erasmus & Boeyens, 1970), hydrated dimers (de Villiers & Boeyens, 1971) and various adducts (Watkins, Cunningham, Phillips, Sands & Wagner, 1969; Richardson, Corfield, Sands & Sievers, 1970). In these structures the lanthanides are either seven or eight coordinate. The seven-coordination polyhedra usually have the geometry of a monocapped trigonal prism. Superficial examination suggests that the capped trigonal prisms found for acetylacetonates (acac) are different from those found for thd and fod (=1,1,1,2,2.3.3-heptafluoro-7.7-dimethyloctane-4.6-dione) complexes. The relationship between the two types of capped trigonal prism is illustrated in Fig. 5. The top and base triangles of the acac type (e.g., Cunningham et al., 1969) are ABC and DEF, with cap G on face ACFD. The distance AE is longer than the normal nearest neighbour approach. In the case of thd and fod hydrates (e.g., Erasmus & Boeyens, 1971) the triangles ABE and GCF are the top and base of the prism with cap D on face AEFG. AC is now longer than a nearest neighbour approach. The factor which decides between the two types of monocapped prism is thus whether AE or AC is the nearest neighbour ap-

Fig. 2. Stereoscopic packing diagram of the structure as viewed approximately along [010]. All stereoscopic drawings were prepared with the help of the program ORTEP of Johnson (1965).

proach. The bites are indicated by dotted lines: AD, BE and CG.

Fig. 3. Schematic drawing of the trigonal prismatic coordination of oxygen atoms around the central erbium ion to illustrate the actually observed geometry.

In both cases atom F represents the oxygen of the water molecule, which is thus not the cap. Should the present structure type thus be representative of all anhydrous lanthanide tris chelates, it follows that hydration involves chemical attack by water to replace one of the oxygen ligand atoms in the trigonal prismatic arrangement around the central ion. This dangling oxygen is then drawn back into the coordination sphere as the cap.

In the anhydrous dimeric chelates of thd and fod, which are also seven coordinated, the same geometry is found (e.g. Erasmus & Boeyens, 1970) as in the hydrates where atom F represents the oxygen of the neighbouring second half of the dimer in which it is designated as atom G and is shared between the two metal ions. Atom G in the first half of the dimer is shared in an equivalent fashion with the neighbouring metal ion. The correspondence between the hydrates and the anhydrous dimers is obvious and could indicate that dimerization occurs via hydration.

The packing of the molecules in the crystal can be described as an almost trigonal array within layers approximately perpendicular to [010] and is shown in Fig. 2. The bulkiness of the t-butyl groups is probably the only factor preventing trigonal crystallographic symmetry. It is noted that some of the t-butyl groups

Table 5. Observed bond angles

	I	II	Av.	$Dy(thd)_3 H_2O$
O(1)-ErO(2)	76.0 (0.4)	72.8 (0.3)	74•4	
ErO(1)-C(5) ErO(2)-C(7)	136·0 (1·3) 138·2 (1·1)	$\left. \begin{array}{c} 138 \cdot 8 \ (0 \cdot 9) \\ 137 \cdot 6 \ (0 \cdot 8) \end{array} \right\}$	137.7	134.4
O(1)C(5)-C(6) O(2)C(7)-C(6)	124·5 (1·9) 121·6 (1·8)	$\left. \begin{array}{c} 125 \cdot 2 \ (1 \cdot 2) \\ 123 \cdot 7 \ (1 \cdot 3) \end{array} \right\}$	123.8	124.7
O(1)—C(5)–C(4) O(2)—C(7)–C(8)	113·8 (1·7) 113·3 (1·9)	$\left.\begin{array}{c} 113.9 \ (1.2) \\ 115.3 \ (1.2) \end{array}\right\}$	114-1	114.6
C(6)C(5)-C(4) C(6)C(7)-C(8)	121·8 (1·8) 125·2 (2·2)	$\left.\begin{array}{c} 121 \cdot 0 \ (1 \cdot 3) \\ 121 \cdot 0 \ (1 \cdot 3) \end{array}\right\}$	122.3	120.6
C(5)C(6)-C(7)	123.8 (2.0)	121.3 (1.3)	122.6	123.0
$\begin{array}{c} C(5) &C(4) - C(1) \\ C(5) &C(4) - C(2) \\ C(5) &C(4) - C(3) \\ C(7) &C(8) - C(9) \\ C(7) &C(8) - C(10) \\ C(7) &C(8) - C(11) \end{array}$	114·8 (1·8) 105·9 (1·2) 107·3 (1·8) 113·1 (2·3)	$\begin{array}{c} 109{\cdot}6 \ (1{\cdot}5) \\ 104{\cdot}9 \ (1{\cdot}4) \\ 114{\cdot}2 \ (1{\cdot}4) \\ 107{\cdot}3 \ (1{\cdot}3) \\ 107{\cdot}8 \ (1{\cdot}3) \\ 114{\cdot}9 \ (1{\cdot}4) \end{array}$	110.0	109-3
$\begin{array}{c} C(1) & - C(4) - C(2) \\ C(1) & - C(4) - C(3) \\ C(2) & - C(4) - C(3) \\ C(9) & - C(8) - C(10) \\ C(9) & - C(8) - C(11) \\ C(10) - C(8) - C(11) \end{array}$	106·4 (1·7) 117·7 (3·2) 109·4 (2·5) 109·8 (1·7)	$\begin{array}{c} 116 \cdot 2 \ (1 \cdot 9) \\ 110 \cdot 2 \ (2 \cdot 4) \\ 101 \cdot 7 \ (2 \cdot 3) \\ 107 \cdot 8 \ (1 \cdot 4) \\ 108 \cdot 0 \ (1 \cdot 5) \\ 110 \cdot 8 \ (1 \cdot 5) \end{array}$	109.8	109.3

 Table 6. Comparison of some variable parameters with the corresponding values obtained for other lanthanide chelates, referenced in the text

	Pr ₂ (thd) ₆	Nd2(thd)6	$Dy(thd)_3 \cdot H_2O$	Er(thd)3	$Lu(fod)_3 \cdot H_2O$
Bite (Å)	2.83	2.77	2.74	2.67	2.63
O–M–Ó(°)	70.4	71.6	73.6	74.4	75.8
M–O (Å)	2.41	2.38	2.30	2.21	2.17

Fig. 4. Stereoscopic drawing to illustrate the conformation of the molecule. The atoms are represented by 20 % probability thermal ellipsoids.

Fig. 5. Schematic drawing to illustrate the relationship between the capped trigonal prisms characteristic of $Ln(acac)_3$. H_2O (cap G) and $Ln(thd)_3$. H_2O , $Ln(fod)_3$. H_2O (cap D) chelates. The bites of the chelate rings are shown as dotted lines.

point into the layers and some of them slightly outwards. The carbon atoms of the methyl groups constituting the latter show the highest thermal motion as expected.

In conclusion it is instructive to compare the variable parameters: bite, d(M-O) and O-M-O angle with those obtained for the lanthanide chelates $Pr_2(thd)_6$ (Erasmus & Boeyens, 1970), $Nd_2(thd)_6$ (Burns, 1970), $Dy(thd)_3$. H_2O (Erasmus & Boeyens, 1971) and $Lu(fod)_3$. H_2O (Boeyens & De Villiers, 1971). As shown in Table 6 there is a regular variation of these values with atomic number and the effect of coordination does not appear to be drastic.

References

- BOEYENS, J. C. A. (1971). J. Chem. Phys. 54, 75.
- BOEYENS, J. C. A. & DE VILLIERS, J. P. R. (1971). J. Cryst. Mol. Struct. 1, 297.
- BOUDREAUX, E. A. (1968). Private communication.
- BURNS, J. H. (1970). Private communication.
- BUSING, W. R. & LEVY, H. A. (1967). Acta Cryst. 22, 457.
- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). ORFLS. Report ORNL-TM-305, Oak Ridge National Laboratory, Tennessee.
- CUNNINGHAM, J. A., SANDS, D. E., WAGNER, W. F. & RICHARDSON, M. F. (1969). *Inorg. Chem.* 8, 22.
- EISENBERG, R. & IBERS, J. A. (1965). J. Amer. Chem. Soc. 87, 3776.
- EISENTRAUT, K. J. & SIEVERS, R. E. (1968). Inorg. Synth. 11, 94.
- ERASMUS, C. S. & BOEYENS, J. C. A. (1970). Acta Cryst. B26, 1843.
- ERASMUS, C. S. & BOEYENS, J. C. A. (1971). J. Cryst. Mol. Struct. 1, 83.
- HERBSTEIN, F. H. & SCHOENING, F. R. L. (1957). Acta Cryst. 10, 657.
- International Tables for X-ray Crystallography (1965). 2nd ed. Vol. I, p. 117. Birmingham: Kynoch Press.
- JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794, Revised. Oak Ridge National Laboratory, Tennessee.
- Mode, V. A. & SMITH, G. S. (1969). J. Inorg. Nucl. Chem. 31, 1857.
- RICHARDSON, M. F., CORFIELD, P. W. R., SANDS, D. E. & SIEVERS, R. E. (1970). *Inorg. Chem.* 9, 1632.
- STOUT, G. H. & JENSEN, L. H. (1968). X-ray Structure Determination, p. 456. New York: The Macmillan Company.
- VILLIERS, J. P. R. DE & BOEYENS, J. C. A. (1971). Acta Cryst. B27, 692.
- WATKINS, E. D., CUNNINGHAM, J. A., PHILLIPS, T., SANDS, D. E. & WAGNER, W. F. (1969). *Inorg. Chem.* 8, 29.
- ZATKIN, A., TEMPLETON, D.H. & KARRAKER, D.G. (1969). Inorg. Chem. 8, 2680.